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Abstract: The accelerating energy transition, coupled with increasing market volatility and
computational advances, has created an urgent need for sophisticated decision-making
tools that can address the unique challenges of energy finance—a gap that reinforcement
learning methodologies are uniquely positioned to fill. This paper provides a comprehen-
sive review of the application of reinforcement learning (RL) in energy finance, with a
particular focus on option value and risk management. Energy markets present unique
challenges due to their complex price dynamics, seasonality patterns, regulatory constraints,
and the physical nature of energy commodities. Traditional financial modeling approaches
often struggle to capture these intricacies adequately. Reinforcement learning, with its
ability to learn optimal decision policies through interaction with complex environments,
has emerged as a promising alternative methodology. This review examines the theoretical
foundations of RL in financial applications, surveys recent literature on RL implementations
in energy markets, and critically analyzes the strengths and limitations of these approaches.
We explore applications ranging from electricity price forecasting and optimal trading
strategies to option valuation, including real options and products common in energy
markets. The paper concludes by identifying current challenges and promising directions
for future research in this rapidly evolving field.

Keywords: reinforcement learning; energy finance; option value; stochastic optimization;
machine learning; risk management

1. Introduction
1.1. Overview

The intersection of energy markets and financial engineering has allowed for the rise
of a specialized field known as energy finance. This domain encompasses the valuation of
energy commodities, derivatives pricing, risk management, and investment decisions in
energy infrastructure. The complexity of energy markets stems from several distinctive
characteristics: high volatility, significant seasonality, mean-reversion tendencies, extreme
price spikes, regulatory influences, and the physical constraints of energy production and
delivery systems [1]. These complexities make conventional financial modeling approaches
insufficient for many applications in energy finance.

Simultaneously, recent advances in artificial intelligence, particularly reinforcement
learning (RL), have opened new avenues for addressing complex decision-making prob-
lems under uncertainty. RL differs from other machine-learning paradigms in its focus on
sequential decision-making and delayed rewards, making it particularly suitable for finan-
cial applications where decisions unfold over time and outcomes become apparent only
in the future [2]. Unlike supervised learning, which requires labeled examples of optimal

Energies 2025, 18, 2712 https://doi.org/10.3390/en18112712

https://doi.org/10.3390/en18112712
https://doi.org/10.3390/en18112712
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-5299-9408
https://doi.org/10.3390/en18112712
https://www.mdpi.com/article/10.3390/en18112712?type=check_update&version=2


Energies 2025, 18, 2712 2 of 41

decisions, RL algorithms can learn through interaction with an environment, gradually
improving their decision policies based on the rewards received.

The application of RL to energy finance represents a convergence of these two complex
domains. The inherent volatility and structural complexities of energy markets create an
ideal testing ground for RL methodologies, while the limitations of traditional approaches
in capturing these complexities create a clear need for more sophisticated techniques. This
review paper aims to systematically analyze how RL has been applied to various problems
in energy finance, with particular attention to derivatives valuation and trading strategies.

While both reinforcement learning and energy finance represent active research ar-
eas individually, the intersection of these fields warrants dedicated review due to their
rapid evolution and the unique challenges that arise in this convergence. Several excellent
reviews exist in adjacent areas. Specifically, Fischer (2018) [2] surveyed reinforcement
learning applications in general financial markets, focusing primarily on stock trading and
portfolio optimization. In addition, Weron (2014) [3] comprehensively examined forecasting
methodologies in electricity markets without a specific focus on reinforcement learning.
However, a comprehensive review focusing specifically on reinforcement learning appli-
cations in energy finance, particularly in derivatives valuation and risk management, is
notably absent from the literature. This gap is significant due to the distinctive characteris-
tics of energy markets that create unique challenges and opportunities for reinforcement
learning methodologies.

The need for this review is particularly timely for several reasons. First, energy markets
globally are undergoing fundamental transformation driven by decarbonization policies,
technological advances in renewable generation, and the emergence of distributed energy
resources. These changes have introduced new sources of uncertainty and complexity that
traditional modeling approaches struggle to address adequately. Second, recent advances
in reinforcement learning, particularly deep reinforcement learning and its variants, have
demonstrated remarkable success in complex decision domains with characteristics similar
to those found in energy markets. Third, energy derivatives and structured products
continue to evolve in complexity, creating both challenges for valuation and opportunities
for novel methodological approaches. The convergence of these trends creates a compelling
need for systematic assessment of how reinforcement learning can address the distinctive
challenges of energy finance.

This review makes several specific contributions to the literature. First, it provides a
unified conceptual framework for understanding reinforcement learning applications in
energy finance, establishing clear connections between RL methodologies, energy market
characteristics, and financial applications. Second, it systematically analyzes the distinctive
features of energy markets—such as extreme price dynamics, physical constraints, and
market incompleteness—that make them particularly suitable for reinforcement learning
approaches while challenging for traditional methodologies. Third, it comprehensively
examines current reinforcement learning methodologies applied to energy finance prob-
lems, critically evaluating their strengths, limitations, and comparative advantages over
conventional approaches. Fourth, it identifies significant research gaps and promising
future directions, providing a roadmap for researchers and practitioners seeking to advance
this emerging field.

This comprehensive review is targeted at several key audiences. First, researchers in fi-
nancial engineering and machine learning will find a systematic overview of how reinforce-
ment learning techniques are being adapted to the unique challenges of energy markets,
highlighting methodological innovations and performance benchmarks [4]. Second, energy
market practitioners—including traders, risk managers, and investment analysts—will
gain insights into cutting-edge quantitative tools that may enhance decision-making in
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increasingly complex and volatile markets. Third, policy makers and regulators concerned
with energy market design and systemic risk will benefit from understanding how ad-
vanced algorithmic approaches may influence market behavior and efficiency. Finally,
graduate students and early-career researchers entering this interdisciplinary field will find
this review provides essential background knowledge and identifies promising research
directions. By bridging theoretical foundations with practical applications, this paper
aims to foster collaboration between academic research and industry practice in advancing
reinforcement learning solutions for energy finance challenges.

The remainder of this paper is organized as follows: Section 2 provides the theoretical
foundations of RL and its relevance to financial applications. Section 3 examines the specific
characteristics of energy markets that make them suitable candidates for RL approaches.
Section 4 reviews the literature on RL applications in energy price forecasting and trading
strategy optimization. Section 5 focuses on derivatives valuation in energy markets using
RL, including options pricing and real options analysis. Section 6 discusses implementa-
tion challenges and methodological considerations when applying RL to energy finance
problems. Section 7 discusses option value in power systems, particularly regarding smart
grid technologies. Section 8 concludes the paper with a synthesis of key findings and
perspectives on the future evolution of this field.

1.2. Illustration

Figure 1 presents the conceptual framework that organizes our comprehensive review
of reinforcement learning applications in energy finance. The framework illustrates the
three fundamental pillars of our analysis: reinforcement learning foundations, energy
market characteristics, and application domains.

Figure 1. Conceptual framework of reinforcement learning applications in energy finance.
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The first pillar, RL Foundations, encompasses the theoretical underpinnings of rein-
forcement learning methodologies relevant to energy finance. The Markov Decision Process
(MDP) framework provides the mathematical structure for sequential decision-making un-
der uncertainty, including states, actions, transition probabilities, reward functions, and dis-
count factors that form the basis of RL algorithms. We review key RL algorithms applicable
to energy finance problems, from classical methods like Q-learning to advanced approaches
such as deep reinforcement learning. The framework also highlights comparisons between
RL and traditional financial methods, emphasizing the distinctive advantages of RL in
handling complex, non-linear dynamics. Implementation considerations address practical
aspects of applying RL to energy finance, including data requirements, computational
needs, state and action space design, and reward function formulation.

The second pillar, Energy Markets Characteristics, identifies the distinctive features
that make energy markets particularly suitable for RL applications. These include com-
plex price dynamics (volatility, mean-reversion, jumps), multi-layer seasonality patterns,
regulatory and market structure factors, physical constraints of energy assets, and market
incompleteness challenges. These characteristics create both challenges for traditional
modeling approaches and opportunities for RL methodologies.

The third pillar organizes the application domains into three major categories. The
first category, Forecasting and Trading, covers RL applications in energy price prediction
and optimal trading strategy development, including risk management approaches. The
second category, Derivatives Valuation, examines RL methods for pricing various energy
options and analyzing real options embedded in physical assets. The third category, Option
Value in Power Systems, focuses on applications specific to electricity systems, including
VaR/CVaR approaches for system reliability and valuation of flexibility provided by smart
grid technologies.

The framework concludes with Challenges and Future Research Directions, identi-
fying current limitations in applying RL to energy finance and promising avenues for
future research. This comprehensive structure provides a roadmap for understanding how
reinforcement learning is transforming analysis and decision-making in energy finance
while highlighting areas where further methodological development is needed.

1.3. Literature Review and Research Gaps

This section systematically reviews the existing literature at the intersection of rein-
forcement learning and energy finance, identifying key research streams and critical gaps
that motivate this paper.

1.3.1. Reinforcement Learning in Financial Markets

Reinforcement learning has gained significant traction in financial applications over
the past decade. Fischer (2018) [2] provided a comprehensive survey of reinforcement
learning applications in general financial markets, focusing primarily on equity trading,
portfolio optimization, and traditional asset classes. This work established RL’s potential
for sequential decision-making under uncertainty but concentrated predominantly on
conventional securities markets rather than commodity or energy-specific applications.

Similarly, foundational work on reinforcement learning methodologies by Sutton and
Barto (2018) [5] established theoretical frameworks applicable across domains but did
not address the specific challenges of energy markets. The ability of RL algorithms to
learn optimal policies through interaction with complex environments, as demonstrated
by Mnih et al. (2015) [6] in other contexts, suggests particular promise for energy finance
applications, though this connection remains underdeveloped in the existing literature.
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1.3.2. Energy Finance Modeling Approaches

Traditional energy finance approaches have evolved to address sector-specific chal-
lenges but often struggle with the full complexity of modern energy markets. Eydeland
and Wolyniec (2003) [1] developed foundational frameworks for energy and power risk
management, identifying distinctive characteristics that include high volatility, significant
seasonality, mean-reversion tendencies, extreme price spikes, regulatory influences, and
physical constraints. However, their methodologies primarily relied on parametric models
and conventional stochastic processes that face limitations in capturing the full complexity
of energy market dynamics.

In the specific area of electricity price forecasting, Weron (2014) [3] comprehensively
examined various methodologies, including time series models, artificial intelligence tech-
niques [7–20], and fundamental approaches. While this work acknowledged the unique
challenges of electricity markets, it did not specifically explore reinforcement learning’s po-
tential for addressing these challenges or connect forecasting to broader financial decision-
making frameworks.

Energy derivatives valuation has received attention from researchers, including Car-
mona and Coulon (2014) [21], who examined structural models for electricity prices, and
Benth et al. (2008) [22], who developed stochastic modeling approaches for electricity mar-
kets. These works established sophisticated mathematical frameworks but generally relied
on closed-form solutions or Monte Carlo methods rather than learning-based approaches
capable of handling market incompleteness and complex constraints.

1.3.3. Energy System Operations with Learning-Based Methods

A separate research stream has focused on optimization and learning methods for
energy system operations.

The operational challenges of power generation assets have been examined by re-
searchers, including Conejo et al. (2010) [23], who developed decision-making frameworks
under uncertainty, and Thompson et al. (2009) [24], who studied energy storage valuation
and optimization. These works established the complex optimization problems inherent
in energy systems but generally treated financial considerations as secondary to technical
constraints and reliability objectives.

More recently, smart grid technologies have introduced new flexibility options into en-
ergy systems, as demonstrated by Konstantelos et al. (2017) [25], Giannelos et al. (2018) [26],
and other works focused on option value and stochastic optimization [27]. While these stud-
ies incorporate uncertainty and flexibility valuation, they typically employ conventional
stochastic optimization methods rather than reinforcement learning approaches.

1.3.4. Research Gaps and Contributions

Based on this literature review, several critical research gaps emerge at the intersection
of reinforcement learning and energy finance:

Gap 1: Lack of an integrated conceptual framework. While separate bodies of literature
address reinforcement learning for finance and optimization methods for energy systems,
a comprehensive framework connecting RL methodologies to the specific characteristics
of energy markets is notably absent. This paper addresses this gap by establishing clear
connections between RL methodologies, energy market characteristics, and financial appli-
cations, providing a unified conceptual structure (as illustrated in Figure 1) that bridges
previously disconnected research streams.

Gap 2: Insufficient analysis of energy market features requiring specialized RL ap-
proaches. The existing literature has not systematically analyzed which distinctive features
of energy markets—such as extreme price dynamics, physical constraints, and market
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incompleteness—make them particularly suitable for reinforcement learning approaches.
This paper provides this analysis in Section 3, establishing a foundation for understanding
why conventional methods may fall short and how RL can address these limitations.

Gap 3: Limited comparative assessment of RL methodologies for energy finance
applications. While various RL algorithms have been applied to isolated energy finance
problems, a comprehensive assessment of their relative strengths and weaknesses across
different application domains is missing. This paper addresses this gap in Section 2.2
and throughout application-specific sections, evaluating algorithm suitability for different
energy finance challenges.

Gap 4: Absence of a comprehensive review of real options analysis with RL in energy
systems. Despite the significant embedded optionality in energy assets and infrastructure,
the existing literature lacks a comprehensive treatment of how RL can enhance real options
valuation in this context. This paper fills this gap in Sections 5.3 and 6, connecting option
theory with reinforcement learning to provide new perspectives on flexibility valuation.

Gap 5: Fragmented understanding of option value in power systems. The literature
on option value in power systems, particularly regarding smart grid technologies, has
developed separately from the RL literature, limiting cross-fertilization between these fields.
This paper bridges this divide in Section 6, examining how RL methods can enhance option
valuation for smart grid investments.

By addressing these gaps, this paper makes several novel contributions to the literature.
First, it provides the first comprehensive review specifically focused on reinforcement
learning applications in energy finance, creating a reference point for researchers and
practitioners working across these domains. Second, it establishes a conceptual framework
that organizes existing and future research, clarifying how different RL methodologies align
with specific energy finance challenges. Third, it systematically evaluates the comparative
advantages of RL approaches over traditional methods across multiple application domains.
Finally, it identifies promising research directions and methodological improvements that
could further advance this emerging field.

This review is particularly timely due the accelerating energy transition [1,2,4,21,23,26–89],
which is creating new sources of uncertainty and complexity in energy markets that con-
ventional modeling approaches struggle to address adequately. Simultaneously, recent
advances in reinforcement learning, particularly deep reinforcement learning and its vari-
ants, have demonstrated remarkable success in complex sequential decision domains with
characteristics similar to those found in energy markets.

2. Theoretical Foundations of Reinforcement Learning in Energy Finance
2.1. Reinforcement Learning Framework

A comprehensive review of reinforcement learning applications in energy finance
is both timely and necessary for several compelling reasons. First, research at this inter-
section has grown exponentially in recent years but remains fragmented across multiple
disciplines, including finance, computer science, energy systems, and operations research.
This fragmentation creates barriers to knowledge transfer and impedes the identification
of common methodological challenges and solutions. Second, the rapid evolution of both
reinforcement learning techniques and energy market structures means that practitioners
and researchers often lack awareness of the full spectrum of available approaches and their
relative strengths for specific energy finance problems. Third, energy markets worldwide
are undergoing fundamental transformation driven by decarbonization policies, technolog-
ical change, and increasing penetration of renewable resources, creating new valuation and
risk management challenges that traditional methods struggle to address. Finally, the prac-
tical implementation of reinforcement learning in energy finance requires interdisciplinary
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expertise that is rarely found within a single research group or company, highlighting the
need for a synthesized review that bridges these knowledge domains.

By reviewing the theoretical underpinnings of reinforcement learning in a financial
context, this section provides the foundational understanding necessary to appreciate the
unique advantages RL offers for addressing the complex decision-making challenges in en-
ergy markets. The remainder of this section examines the core components of reinforcement
learning and their specific relevance to financial applications.

Reinforcement learning is a computational method for learning how to make optimal
decisions through interactions with an environment (Sutton and Barto, 2018) [51]. The core
framework of RL is the Markov Decision Process (MDP), which includes:

• A set of states S representing the environment
• A set of actions A available to the agent
• Transition probabilities P(s′|s, a) defining how actions lead to new states
• A reward function R(s, a, s′) providing feedback on action quality
• A discount factor γ determining the relative importance of immediate versus future

rewards

In this framework, an agent learns a policy π that maps states to actions, with the goal
of maximizing the expected cumulative discounted reward over time (Sutton and Barto,
2018) [51]. The value function Vπ(s) represents the expected return starting from the state
s and following policy π thereafter:

Vπ(s) = Eπ

[
∑∞

t=0 γtRt+1
∣∣S0 = s

]
Similarly, the action–value function Qπ(s, a) represents the expected return starting

from the state s, taking action a, and following policy π thereafter:

Qπ(s, a) = Eπ

[
∑∞

t=0 γtRt+1
∣∣S0 = s, A0 = a

]
The optimal policy π maximizes these value functions, yielding the optimal value

function Vs and optimal action–value function Q*(s, a).

2.2. RL Algorithms Relevant to Financial Applications

The application of reinforcement learning to finance has been facilitated by several
classes of algorithms, each with distinct characteristics that make them suitable for different
financial problems.

Value-based methods focus on learning the value function or action-value function
from which a policy is derived. Q-learning, introduced by Watkins and Dayan (1992) [90],
and its neural network extension, Deep Q-Networks (DQN) [6], have found significant
applications in financial domains. These approaches excel in environments with discrete
action spaces, such as binary trading decisions or discrete investment choices, due to their
ability to estimate the expected return of each possible action precisely.

Policy gradient methods, in contrast, directly parameterize and optimize the policy
without explicitly computing a value function. This category includes algorithms such
as REINFORCE [91], Trust Region Policy Optimization (TRPO) [92], and Proximal Policy
Optimization (PPO) [93]. The strength of these methods lies in their ability to handle con-
tinuous action spaces effectively, making them particularly valuable for portfolio allocation,
hedging decisions, and other financial applications requiring nuanced control.

Actor–critic methods represent a hybrid approach that maintains both a value func-
tion approximator (the critic) and a separate policy representation (the actor). Prominent
examples include Advantage Actor–Critic (A2C) and Deep Deterministic Policy Gradient
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(DDPG) [11]. These methods have demonstrated effectiveness in complex financial envi-
ronments by combining the stability of value-based methods with the capability to handle
continuous actions. This dual structure allows for more efficient learning in the intricate
and often non-stationary conditions characteristic of financial markets.

Model-based RL algorithms learn an explicit model of the environment’s dynamics to
facilitate planning and decision-making. Notable implementations include Dyna-Q [94]
and more recent approaches such as Model-based Policy Optimization (MBPO) [84]. The
data efficiency of these methods presents a significant advantage in financial applications,
where data acquisition may be limited or costly. By learning to predict market behavior,
these algorithms can simulate potential outcomes of different strategies without requiring
actual market interaction, potentially reducing both risk and the data requirements for
effective learning.

2.3. RL vs. Traditional Financial Modeling Approaches

Financial modeling and decision-making have historically relied on several well-
established methodologies, each with distinct characteristics and limitations when applied
to complex markets such as those in the energy sector.

Dynamic programming and stochastic control techniques, formalized through the
Hamilton–Jacobi–Bellman equation, provide mathematically rigorous frameworks for
sequential decision-making under uncertainty. Despite their theoretical elegance, these
approaches typically require explicit specification of system dynamics and reward functions,
rendering them computationally intractable for high-dimensional problems or systems
with complex transition dynamics [95]. This limitation is particularly relevant in energy
markets, where multiple interacting factors influence price dynamics.

Monte Carlo simulation methods have been widely employed to address uncertainty
in financial modeling by generating numerous random scenarios to estimate expected
outcomes. While effective for many applications, these techniques generally necessitate a
predefined model of the underlying stochastic processes, potentially introducing model
risk when the specified processes deviate from actual market behavior [68].

Parametric models, such as the Black–Scholes framework for option pricing or GARCH
models for volatility forecasting, rely on specific assumptions about the underlying stochas-
tic processes. Although these models offer computational efficiency and interpretability,
their underlying assumptions—including normality of returns, constant volatility, or spe-
cific mean-reversion properties—often fail to capture the complex dynamics observed in
energy markets [80].

Reinforcement learning presents several comparative advantages in addressing these
limitations. First, the model-free nature of many RL algorithms enables learning optimal
policies without requiring explicit specification of environmental dynamics, a valuable
characteristic when these dynamics are complex, unknown, or difficult to parameter-
ize. Second, RL approaches, particularly when implemented with deep neural networks,
demonstrate superior capacity for capturing non-linear relationships that resist effective
parametric modeling [96]. Third, RL frameworks inherently accommodate adaptability
through continuous policy updates based on new observations, allowing them to respond
to evolving market conditions. Finally, RL methodologies can naturally incorporate com-
plex constraints and multiple objectives that may prove challenging to formulate within
closed-form optimization problems.

However, these advantages must be weighed against certain trade-offs involving
interpretability, data requirements, and computational complexity—considerations that
will be examined in subsequent sections of this review.
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3. Characteristics of Energy Markets Relevant to RL Applications
Energy markets possess several distinctive characteristics that make them both chal-

lenging for traditional modeling approaches and suitable candidates for RL applications.

3.1. Price Dynamics and Volatility

Energy commodities (electricity, coal, natural gas, crude oil, etc.) exhibit distinctive
price dynamics that differentiate them from conventional financial assets (stocks, bonds,
currencies, etc.), presenting unique challenges for modeling and trading strategies. These
dynamics can be characterized by several key features that make traditional financial
models often inadequate.

Energy markets display exceptional volatility, particularly in electricity markets, where
price amplitudes significantly exceed those observed in conventional securities markets.
While typical financial assets may experience annual volatility of 20–30%, electricity prices
can undergo fluctuations of several hundred percent within equivalent timeframes [3].
This extraordinary volatility is primarily attributable to the limited storability of electricity
and the necessity for instantaneous balance between supply and demand. The 2021 Texas
winter storm provides a striking illustration, with wholesale electricity prices reaching the
market cap of USD 9000/MWh, representing an approximately 9000% increase from typical
levels [97].

Unlike many financial assets that follow random walk processes, energy prices typ-
ically exhibit mean-reverting behavior. This tendency to return to fundamental equi-
librium levels occurs because energy prices are intrinsically linked to production costs.
When prices deviate significantly from these costs, market mechanisms induce corrective
movements—excessive prices stimulate increased production, while depressed prices lead
to supply contraction. The mean-reversion rate varies considerably across energy com-
modities, with electricity prices potentially reverting within hours, while natural gas might
require months to return to equilibrium levels [98].

A distinctive characteristic of energy markets, particularly electricity, is the occurrence
of extreme price spikes. These episodic events manifest as transient but dramatic price
increases, potentially orders of magnitude above normal levels. Such spikes typically
result from supply constraints, extreme weather events, or technical failures in generation
or transmission infrastructure. During the aforementioned 2021 Texas winter storm, the
confluence of increased heating demand and widespread generation outages produced
price spikes reaching the market cap [97]. These non-normally distributed events present
significant challenges for conventional modeling approaches while creating opportunities
for adaptive algorithms capable of recognizing precursory patterns [83].

Energy price dynamics operate across multiple overlapping timescales, creating com-
plex temporal structures. These include intraday patterns reflecting diurnal demand
fluctuations, weekly cycles distinguishing between workdays and weekends, seasonal
variations driven by weather-dependent consumption, and long-term trends reflecting
technological and regulatory evolution [99]. This multi-layered temporal structure necessi-
tates modeling approaches capable of simultaneously capturing short-term fluctuations
and long-term evolutionary patterns.

These complex dynamics exceed the capabilities of traditional parametric models,
which typically rely on simplifying assumptions inappropriate for energy markets. This
limitation creates a compelling opportunity for reinforcement learning approaches, which
can learn directly from empirical data without imposing restrictive structural assumptions.

These theoretical price dynamics are vividly illustrated by several historical events
in electricity markets. During the 2021 Texas winter storm, wholesale electricity prices
in ERCOT reached the market cap of USD 9000/MWh, representing an approximately
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9000% increase from typical levels of around USD 20–30/MWh [50,100]. This extreme
price spike reflected both the physical non-storability of electricity and supply–demand
imbalance when approximately 48.6% of generation capacity was forced offline due to
weather conditions, while heating demand simultaneously surged. Following this crisis,
prices rapidly reverted to normal levels once generation facilities were restored and demand
normalized, demonstrating the mean-reverting characteristic discussed above.

The Australian National Electricity Market provides another instructive example of
complex price dynamics. Specifically, Higgs and Worthington (2008) [76] documented that
this market exhibited mean-reverting behavior with both intraday and seasonal patterns,
but it also experienced frequent extreme price spikes. Their analysis showed that these
spikes followed distinct statistical distributions that conventional models struggled to
capture, highlighting the challenge for traditional pricing approaches.

Natural gas markets demonstrate different temporal dynamics but similar complexity.
In their comprehensive analysis, Nick and Thoenes (2014) [101] showed that European
natural gas prices exhibit mean-reversion at multiple time scales—short-term reversions
following supply disruptions or weather events, and longer-term reversions toward produc-
tion costs. Their study documents how these dynamics interact with seasonality patterns
and storage levels to create complex price behaviors that cannot be adequately modeled by
conventional stochastic processes.

3.2. Seasonality and Cyclicality

Energy markets exhibit pronounced temporal patterns across multiple timescales,
creating complex cyclical structures in price formation. These patterns manifest through
intraday fluctuations reflecting diurnal demand variations, with peak consumption hours
typically commanding price premiums. Weekly cycles emerge from the distinct consump-
tion profiles of weekdays versus weekends, while seasonal variations are predominantly
driven by weather-dependent demand—heating requirements during winter months and
cooling demand during summer periods in most regions. Certain energy commodities,
particularly natural gas, display marked annual cyclicality attributable to storage injection–
withdrawal cycles and seasonal consumption patterns.

The interaction of these temporal components creates a multi-layered structure that
evolves dynamically in response to changing consumption behaviors, technological ad-
vancements, and regulatory modifications. Reinforcement learning methodologies offer the
potential to capture these intricate temporal dependencies without necessitating explicit
parameterization of individual cyclical components.

These theoretical patterns are clearly observable in empirical data across energy mar-
kets. Examining the PJM electricity market, Knittel and Roberts (2005) [102] documented
pronounced diurnal patterns with peak/off-peak price differentials averaging 25–45%,
depending on the season. Their analysis identified predictable load patterns driving
these cycles, with price peaks typically occurring between 4–7 pm on weekdays. Beyond
daily patterns, they found weekly cycles, with Sunday prices averaging 15–30% below
Tuesday–Thursday levels due to lower commercial and industrial activity.

Natural gas markets provide a striking illustration of annual seasonality. Analyzing
the Henry Hub benchmark, Suenaga et al. (2008) [103] documented how the injection–
withdrawal cycle creates predictable price patterns, with late-summer-to-early-fall prices
(during peak storage injection) historically averaging 10–15% below winter prices (during
peak withdrawal). This seasonality interacts with storage inventory levels—Brown and
Yücel (2008) [104] showed that when storage levels fall significantly below 5-year aver-
ages, winter price premiums can expand dramatically, sometimes exceeding 50% above
summer prices.
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European energy markets demonstrate how these cyclical patterns can evolve with
changing consumption behaviors. Particularly, Paraschiv et al. (2015) [105] analyzed Ger-
man electricity markets following substantial renewable integration, finding that traditional
seasonality was increasingly overlaid with renewable generation cycles. Their research
documented how solar generation created midday price depressions (sometimes resulting
in negative prices) that altered the traditional peak/off-peak pattern, demonstrating how
technological change can reshape fundamental market dynamics.

3.3. Regulatory and Market Structure Considerations

Energy markets operate within complex regulatory frameworks that substantially
influence price formation mechanisms and market dynamics. Market design varies signifi-
cantly across jurisdictions, ranging from fully liberalized structures to partially regulated en-
vironments, each with distinctive price formation processes [87]. Many electricity markets
incorporate separate capacity mechanisms that provide supplementary revenue streams
for generators, further complicating asset valuation and investment decision-making [40].

Renewable energy integration policies, including subsidies, feed-in tariffs, and priority
dispatch provisions, significantly alter market dynamics and can precipitate negative price
episodes [106]. Additionally, carbon pricing mechanisms and environmental regulations
introduce further complexity to energy price formation [48]. These regulatory factors
create regime-dependent dynamics that traditional modeling approaches struggle to ac-
commodate. The adaptive learning capabilities of reinforcement learning algorithms are
particularly suited to navigating these regulatory complexities.

The impact of regulatory frameworks on energy price formation is clearly illustrated by
comparing market designs and policy impacts across different jurisdictions. Comparing the
PJM and ERCOT electricity markets, Potomac Economics and Electric Reliability Council
of Texas (2020) [107] documented how their structural differences created divergent price
dynamics despite similar underlying fundamentals. While both markets use locational
marginal pricing, PJM’s capacity market provides generators with a separate revenue
stream beyond energy prices, resulting in less extreme price volatility during scarcity
conditions compared to ERCOT’s energy-only design. During comparable reserve shortage
events, maximum real-time prices reached significantly higher levels in ERCOT than in
PJM, demonstrating how market design fundamentally shapes price behavior.

The impact of renewable energy policies is evident in Germany’s electricity market
transformation. Specifically, Ketterer (2014) [106] empirically analyzed how Germany’s
renewable integration policies, particularly solar subsidies and priority dispatch provi-
sions, fundamentally altered market dynamics. Her econometric analysis documented
a 36% reduction in average daily price levels between 2006–2012 attributable to solar
and wind penetration, along with increased volatility. Furthermore, the study identified
40 negative price episodes during that period, a phenomenon virtually non-existent before
these policies.

Carbon pricing mechanisms provide another example of regulatory impacts on energy
markets. Analyzing the EU Emissions Trading System, Fabra and Reguant (2014) [48]
found that power producers passed through approximately 80% of carbon prices to whole-
sale electricity prices, demonstrating how environmental regulations directly influence
price formation. Their study showed that pass-through rates varied significantly across
market conditions and generator types, creating complex interactions between carbon and
electricity price dynamics.
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3.4. Physical Constraints and Real Options

Energy assets are subject to substantial physical constraints that generate embed-
ded optionality in their operation. Power generation facilities face operational limita-
tions, including minimum and maximum output thresholds, ramp rate restrictions, and
startup/shutdown costs that create complex optimization problems [23]. Energy storage
facilities, such as natural gas storage or hydroelectric reservoirs, operate under capacity
constraints, injection/withdrawal rate limitations, and cycle efficiency losses [24]. Addi-
tionally, transmission infrastructure constraints can induce locational price differentials
and restrict arbitrage opportunities [77].

These physical constraints create real options that present significant valuation chal-
lenges for traditional methodologies. The sequential decision-making framework inherent
in reinforcement learning approaches aligns naturally with the temporal exercise of these
real options, offering advantages over conventional valuation techniques.

The operational constraints of power generation units create complex optimiza-
tion challenges with significant economic implications. In their analysis of gas-fired
power plants, Staffell and Green (2016) [108] documented how start-up costs ranged
from GBP 3000–GBP 30,000 per start (approximately USD 4000–USD 40,000), depending
on plant size and technology, while ramp rates limited output changes to 2–7% of capacity
per minute. These constraints transformed the simple spark spread calculation into a com-
plex optionality valuation problem that traditional methodologies struggle to accurately
capture.

Transmission constraints frequently create locational price differentials that reflect
embedded real options in the energy system. In a comprehensive analysis of the PJM
market, Woo et al. (2011) [109] documented congestion-driven price differences exceeding
USD 50/MWh between neighboring nodes during approximately 15% of hours studied.
These differentials reflect the option value of transmission capacity, which varies with
system conditions, demand patterns, and generation availability—a complexity well-suited
to reinforcement learning approaches.

Energy storage facilities operate under multi-dimensional constraints that generate
sophisticated optionality. Analyzing grid-scale battery storage, Staffell and Rustomji
(2016) [110] detailed how cycle degradation (0.2–0.5% capacity loss per full cycle), depth-of-
discharge limitations, and round-trip efficiency losses (15–25%) created complex trade-offs
between short-term revenue opportunities and long-term asset value. These characteristics
create real options that require advanced modeling techniques to value appropriately,
particularly as storage technologies evolve and market services expand.

3.5. Market Incompleteness and Liquidity Constraints

Energy markets exhibit characteristics of financial incompleteness that impede compre-
hensive risk management. Basis risk emerges when standardized trading instruments fail
to match the temporal or locational specificity of physical energy exposures. This mismatch
between available hedging instruments and actual physical positions creates inherent
inefficiencies, necessitating risk premiums to compensate for unhedgeable exposures [1].

Liquidity constraints represent a related challenge, as many energy derivatives mar-
kets exhibit limited depth. Restricted participation results in widened bid–ask spreads,
elevated transaction costs, and potential price impacts from large transactions. This thin
trading environment undermines a fundamental assumption of risk-neutral valuation—
continuous portfolio rebalancing without price impact. The inability to establish and
maintain cost-effective perfect hedges compromises the theoretical foundation of tradi-
tional pricing models, necessitating additional risk premiums that cause deviations from
theoretical values.
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Furthermore, energy markets encompass heterogeneous participants with divergent
objectives, operational constraints, and risk preferences. This diversity in market partic-
ipation leads to complex price formation dynamics that may not conform to standard
equilibrium assumptions [111]. These market imperfections challenge traditional valuation
methodologies predicated on no-arbitrage principles and market completeness. Rein-
forcement learning approaches offer alternative methodologies capable of incorporating
transaction costs, liquidity constraints, and participant heterogeneity.

Basis risk in energy hedging creates significant challenges that illustrate market in-
completeness. Examining natural gas markets, Brinkmann and Rabinovitch (1995) [112]
documented basis risk between Henry Hub futures and 28 delivery locations, finding cor-
relations ranging from 0.42 to 0.96. This incomplete correlation meant that even “hedged”
positions retained substantial exposure, with risk reduction ranging from 18% to 92% across
locations. Their analysis demonstrated how geographical specificities prevented perfect
hedging even with standardized instruments.

The liquidity constraints in energy derivatives markets significantly impact trading
costs and risk management. In their analysis of electricity forward markets, Frestad et al.
(2010) [51] found bid–ask spreads in the Nordic electricity market (Nord Pool) ranging from
0.5% for front-month contracts to over 4% for quarters beyond 1 year. These transaction
costs materially impacted hedging effectiveness and implied that continuous portfolio
rebalancing—a key assumption in many valuation models—was economically infeasible
beyond short time horizons.

Market participant heterogeneity further contributes to energy market incompleteness.
Analyzing the UK electricity market, Karakatsani and Bunn (2008) [113] documented how
different categories of participants (generators, suppliers, financial traders) systematically
valued forward contracts differently based on their physical positions and risk preferences.
Generators consistently valued forward contracts at a 5–12% discount to expected spot
prices, while suppliers paid a 3–8% premium, creating a persistent risk premium that
violated risk-neutral pricing assumptions. This heterogeneity demonstrates how energy
markets operate with multiple subjective valuations rather than the single risk-neutral
measure assumed by complete market theory.

4. RL for Energy Price Forecasting and Trading Strategies
Before examining specific applications in detail, Table 1 provides a systematic clas-

sification of reinforcement learning implementations in energy trading and forecasting.
This classification organizes the literature by algorithm type, application domain, data
characteristics, and key findings, offering a structured framework for understanding the
evolving landscape of RL applications in energy markets. The table highlights the pro-
gression from traditional RL algorithms toward more sophisticated approaches, including
distributional and multi-agent frameworks, reflecting the increasing complexity of energy
market challenges being addressed. This classification also reveals patterns in method-
ological choices for different problem types, with value-based methods predominating
in forecasting applications and policy-based approaches showing particular strength in
trading strategy development. As the subsequent sections elaborate on these applications,
this classification serves as a reference point for identifying methodological trends and
comparative performance across different market contexts.
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Table 1. Classification of Reinforcement Learning Applications in Energy Trading and Forecast-
ing. This table categorizes key studies by algorithm type, application domain, data characteristics,
and principal findings, illustrating the diverse approaches to implementing RL in energy market
prediction and trading strategy development (2018–2024).

Study RL Algorithm Energy Application Data Characteristics Key Findings

Jiang and
Powell

(2018) [85]

Value iteration with
function approximation

Ensemble forecasting of
electricity prices PJM hourly price data

RL-based ensembles adapt better to
regime changes than static

ensemble methods

Boukas et al.
(2020) [114]

Proximal policy
optimization

Intraday electricity
trading

Nord Pool
intraday market

RL strategy outperforms benchmark
strategies by 15–28% in

risk-adjusted returns

Du et al.
(2021) [46] Multi-agent DQN Bidding strategy in

day-ahead markets ERCOT market data
Multi-agent approach effectively

approximates Nash
equilibrium solutions

Moti (2022)
[115] Q-learning

Electricity price
prediction in

blockchain-based grid

Simulated smart grid
environment

RL framework mediates
operator–consumer interactions for

price prediction
Pannakkong
et al. (2023)

[116]

Double deep
Q-network

Peak electricity
demand forecasting

Thailand’s electricity
demand data

DDQN outperformed individual ML
models by dynamically selecting

optimal models
Guo and

Wang (2020)
[72]

Deep Q-network
Adaptive model

selection for price
forecasting

ISO New
England data

RL framework reduced MAPE by
18% compared to the best

individual model
Cao et al.

(2023) [30] Deep distributional RL Options
portfolio hedging

Simulated &
empirical energy data

Outperformed delta hedging by
22–30% in managing non-linear risks

Mulliez
(2021) [117] Q-learning Dynamic hedging with

basis risk
Natural gas

basis spreads

Adaptive hedging outperformed
traditional approaches under

time-varying risks
Chen et al.
(2020) [34]

Hybrid RL +
supervised learning

Energy
portfolio hedging

Futures and spot
price data

Cross-learning improved profit-risk
tradeoffs vs. static hedging

Karimi
Madahi et al.
(2024) [118]

Distributional RL Battery
storage arbitrage

UK imbalance
settlement prices

Captured asymmetric risk profiles
better than expected value methods

4.1. Energy Price Forecasting with RL

Accurate price forecasting constitutes a fundamental component of energy trading and
risk management. Traditional forecasting methodologies in energy markets encompass time
series models (ARIMA, GARCH), fundamental models based on supply–demand balances,
grey system theory models, and conventional machine-learning approaches, including
neural networks and support vector machines [3]. The grey system theory, introduced by
Deng (1982) [43], offers prediction methods particularly suited for systems with limited and
uncertain information—characteristics often present in energy markets. Grey prediction
models, notably GM (1, 1) and its variants, have demonstrated effectiveness in electricity
price forecasting by requiring minimal historical data while maintaining reasonable accu-
racy [119,120]). These methods are especially valuable when dealing with non-stationary
series and limited samples, complementing traditional statistical approaches. Grey models
have been further enhanced through hybrid approaches, combining them with wavelets,
neural networks, or residual correction mechanisms to improve forecasting performance
across different time horizons (Zhao et al., 2015) [121]. Reinforcement learning offers a
distinctive paradigm for addressing forecasting challenges by reformulating prediction as
a sequential decision-making problem rather than a static estimation task.

Energy forecasting methodologies have evolved significantly in recent years, with
numerous innovations emerging in 2024–2025. Specifically, Mystakidis et al. (2024) [122]
provided a comprehensive review of energy forecasting techniques across different time
horizons, highlighting how deep-learning approaches are increasingly outperforming
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traditional methods in capturing complex patterns in energy data. Several noteworthy
advances have emerged in neural network architectures optimized for energy forecasting.
Also, Majeske et al. (2025) [17] introduced dynamic attention neural networks (A-RNN)
for industrial energy forecasting, demonstrating how attention mechanisms can capture
spatiotemporal dependencies in multi-device systems while providing interpretability
through learned feature importance. This approach shares conceptual similarities with
attention-based reinforcement learning algorithms, suggesting potential integration paths
between these methodologies.

Hybrid decomposition techniques combined with deep learning have shown remark-
able results in renewable energy forecasting. Boucetta et al. (2024) [123] developed a
novel approach combining Variational Mode Decomposition (VMD) with CNN-LSTM
architectures for photovoltaic power forecasting, significantly outperforming conventional
deep-learning methods. Similarly, Famoso et al. (2024) [49] integrated Artificial Neural
Networks with stochastic dependability modeling for wind power forecasting, achieving
substantial accuracy improvements by accounting for operational uncertainties like turbine
failures. These approaches demonstrate the value of incorporating domain-specific knowl-
edge into forecasting models, a principle that reinforcement learning naturally extends by
learning optimal forecasting policies through environment interaction.

Optimization of neural network architectures has emerged as another promising
direction. Specifically, Hosseini et al. (2025) [78] proposed a hybrid GA-PSO approach
that optimizes Deep Neural Networks for energy consumption and photovoltaic produc-
tion forecasting, achieving up to 27% accuracy improvements over traditional methods.
This evolutionary optimization shares conceptual similarities with policy optimization in
reinforcement learning, suggesting potential cross-fertilization between these approaches.

In their survey of medium- and long-term energy forecasting methods, Rodrigues Dos
Reis et al. (2025) [124] highlighted the progressive shift toward advanced computational
intelligence that can handle increasingly complex data and environment interactions. This
trend aligns with the reinforcement learning paradigm discussed in this review, which refor-
mulates forecasting as a sequential decision-making process rather than a static prediction
task. As these forecasting techniques continue to evolve, their integration with reinforce-
ment learning frameworks presents a compelling research direction, potentially combining
the predictive power of specialized neural architectures with the adaptive decision-making
capabilities of RL agents.

Several research streams have emerged in the application of reinforcement learning
to energy price forecasting. The direct forecasting approach employs RL algorithms to
predict future prices by learning from historical patterns and market feedback. Specifically,
Pannakkong et al. (2023) [116] developed a framework utilizing Double Deep Q-Networks
(DQN) to dynamically select optimal ensembles of machine-learning models for peak
electricity demand forecasting. Their approach demonstrates how reinforcement learning
can integrate model selection directly into the forecasting process, thereby improving
prediction accuracy while adapting to evolving demand patterns in real-time environments.

Adaptive forecasting strategies represent another promising application of RL method-
ologies. Specifically, Guo et al. (2020) [72] proposed an adaptive reinforcement learning
framework for electricity price forecasting that dynamically selects from a portfolio of
forecasting models based on prevailing market conditions. In their implementation, the
state space incorporates recent price trajectories and exogenous variables, while the action
space consists of candidate forecasting models. This meta-learning approach demonstrated
superior performance compared to individual forecasting methodologies, particularly
during regime transitions in market behavior.
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The application of reinforcement learning to feature selection and engineering has also
yielded promising results. Specifically, Moti (2022) [115] introduced a novel framework
employing Q-learning within blockchain-based smart grid environments for electricity price
prediction. Their approach implements a Stackelberg game-theoretic framework mediating
interactions between grid operators and consumers to optimize pricing mechanisms in real
time, illustrating the potential of RL methodologies in dynamic, multi-agent environments.

Ensemble methods leveraging reinforcement learning have demonstrated particular
efficacy in energy price forecasting. In particular, Jiang and Powell (2018) [85] developed
an ensemble approach that combines multiple forecasting models with an RL algorithm
determining optimal model weights based on recent performance metrics and prevailing
market conditions. This methodology exhibited a remarkable capacity to adapt to regime
changes in energy markets, consistently outperforming static ensembles and individual
forecasting models during periods of market transition.

Traditional forecasting methodologies in energy markets encompass time series mod-
els (ARIMA, GARCH), fundamental models based on supply–demand balances, grey
system theory models, and conventional machine-learning approaches, including neural
networks and support vector machines [3]. The grey system theory, introduced by Deng
(1982) [43], offers prediction methods particularly suited for systems with limited and uncer-
tain information—characteristics often present in energy markets. Grey prediction models,
notably GM (1, 1) and its variants, have demonstrated effectiveness in electricity price fore-
casting by requiring minimal historical data while maintaining reasonable accuracy [119].
These methods are especially valuable when dealing with non-stationary series and limited
samples, complementing traditional statistical approaches. Reinforcement learning offers a
distinctive paradigm for addressing forecasting challenges by reformulating prediction as
a sequential decision-making problem rather than a static estimation task.

4.2. Optimal Trading Strategies

The implementation of effective trading strategies in energy markets requires ad-
dressing unique challenges, including high volatility, complex seasonality patterns, and
distinctive price dynamics. Reinforcement learning methodologies have emerged as promis-
ing approaches for developing adaptive trading strategies capable of navigating these
market complexities.

In day-ahead electricity markets, Du et al. (2021) [46] proposed a multi-agent deep
reinforcement learning framework for optimizing bidding strategies. Their approach
approximated Nash equilibrium solutions whereby market participants, represented as
autonomous agents, learned optimal bidding policies through iterative interaction within
simulated market environments. This methodology demonstrated particular effectiveness
in capturing strategic behaviors in oligopolistic market structures where participants must
consider competitors’ potential actions.

Concerning shorter-term trading horizons, Boukas et al. (2020) [114] developed a
reinforcement learning framework, specifically addressing intraday electricity trading
challenges. Their implementation utilized the Proximal Policy Optimization algorithm
with a comprehensive state representation incorporating recent price trajectories, order book
information, and temporal features. Empirical evaluation demonstrated the framework’s
capacity to exploit intraday price patterns, particularly short-term price reversals and
momentum effects. The authors noted that their approach exhibited superior adaptability
to changing market conditions compared to traditional rule-based trading strategies.

More recently, Seyed Soroush Karimi Madahi et al. (2024) [118] advanced the applica-
tion of reinforcement learning to energy storage arbitrage by implementing a distributional
reinforcement learning framework. Their approach focused specifically on optimizing
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battery operation for profit maximization within imbalance settlement mechanisms in
electricity markets. The authors’ key contribution lies in their modeling of complete return
distributions rather than merely expected values, enabling enhanced decision-making un-
der uncertainty. This distributional perspective proved particularly valuable in capturing
the asymmetric risk profiles characteristic of imbalance markets, where price volatility
exhibits pronounced skewness and kurtosis [67].

These studies collectively demonstrate the evolution of reinforcement learning applica-
tions in energy trading, from strategic bidding in structured markets to tactical exploitation
of short-term price dynamics and sophisticated risk management in storage optimization.

4.3. Risk Management Applications

The application of reinforcement learning to risk management in energy trading has
garnered increasing attention, particularly in the domains of hedging, portfolio optimiza-
tion, and risk measurement. Several recent studies have demonstrated the efficacy of
RL-based approaches in addressing the unique challenges of energy markets.

Value at Risk (VaR) represents a fundamental cornerstone of financial risk management
in energy markets, quantifying the maximum potential loss over a specified time horizon
at a particular confidence level [88]. Traditional VaR methodologies in energy finance
include historical simulation, parametric approaches, and Monte Carlo simulation, each
with distinct advantages and limitations in capturing the complex dynamics of energy price
behavior [125]. In this context, Halkos and Tsirivis (2019) [73] demonstrated the importance
of employing advanced GARCH-type models for VaR estimation in energy portfolios,
highlighting how these approaches can better quantify capital at risk due to the distinctive
volatility patterns of energy commodities. The application of neural networks to VaR
estimation has shown particular promise, with Wang, Liu, and Yao (2024) [126] developing
an explainable quantile regression neural network (QRNN) method for VaR forecasting in
energy markets that addresses both accuracy and interpretability concerns [127].

Conditional Value at Risk (CVaR), which measures the expected loss exceeding VaR,
has found significant applications in power system reliability assessments. In particular,
Zhang et al. (2023) [128] developed a CVaR-based reserve assessment model for power
systems that explicitly accounts for primary energy supply risks, demonstrating how
advanced risk metrics can enhance reliability in systems with high renewable penetration.
These developments in VaR and CVaR methodologies provide important foundations for
reinforcement learning applications in energy risk management, as RL frameworks can
potentially learn to dynamically adjust risk measures based on evolving market conditions.

Specifically, Cao et al. (2023) [30] developed a deep distributional reinforcement
learning framework for options portfolio hedging that has direct applicability to energy
derivatives. Their methodology extends beyond conventional delta hedging by incorporat-
ing gamma and vega exposure management through quantile regression techniques. This
approach enables more comprehensive risk-aware decision-making by modeling the entire
distribution of potential outcomes rather than merely expected values. Empirical evalua-
tions demonstrated that their framework consistently outperformed benchmark strategies
in managing non-linear risks across diverse market scenarios, suggesting significant poten-
tial for application in the complex derivatives structures common in energy markets.

The challenge of basis risk—a persistent issue in energy hedging due to imperfect
correlation between physical exposures and available hedging instruments—was addressed
by Mulliez (2021) [117] through an innovative Q-learning framework. This study demon-
strated how reinforcement learning methodologies can dynamically adapt hedging strate-
gies in environments characterized by structural pricing mismatches. Comparative analysis
revealed superior performance relative to traditional analytical hedging approaches, partic-
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ularly in scenarios where the underlying and hedging instruments exhibit time-varying
correlation structures—a common occurrence in regional energy markets with transmis-
sion constraints.

Particularly, Chen et al. (2020) [34] proposed a hybrid methodology combining rein-
forcement learning with supervised learning techniques specifically tailored to the dynamic
nature of energy portfolios. Their cross-learning framework effectively captured tempo-
ral patterns in energy price dynamics while supporting adaptive strategy generation in
response to changing market conditions. Performance evaluations indicated improved
profit–risk trade-offs compared to both static hedging protocols and purely statistical
methodologies, highlighting the advantages of RL’s sequential decision-making paradigm
in volatile energy markets.

Specifically, Trabelsi et al. (2025) [129] investigated tail risk transmission between
crude oil and clean energy stock indices using a Time-Varying Parameter Vector Auto-
Regressive model integrated with a Conditional Autoregressive Value-at-Risk approach.
Their findings highlighted how crises like the COVID-19 pandemic intensified volatility
spillovers between these markets, providing crucial insights for risk management strategies.
These findings underscore the potential value of reinforcement learning approaches that
can adapt to such regime shifts in market behavior, learning optimal risk management
policies across different market states.

In examining broader portfolio construction considerations, Barrera–Rivera and
Valencia–Herrera (2022) [130] developed an integrated framework combining machine-
learning techniques with conditional risk measures for energy asset portfolios. Their
research explored the construction of efficient frontiers under dynamic conditions and
leveraged scenario simulations to enhance decision robustness. The implementation of
machine-learning models provided particular advantages in forecasting non-linear depen-
dencies characteristic of energy price behavior, enabling more effective hedging strategy
formulation under uncertainty.

The integration of reinforcement learning with VaR and CVaR methodologies presents
a promising frontier for energy risk management. The ability of RL algorithms to learn
complex, non-linear relationships and adapt to changing market conditions aligns naturally
with the challenges of risk quantification in volatile energy markets. As demonstrated
by applications in related fields [69,131], the combination of advanced risk metrics with
learning-based approaches offers potential to enhance both the accuracy and adaptability
of risk management strategies in energy markets.

Collectively, these studies demonstrate reinforcement learning’s significant potential
in addressing the complex risk management challenges endemic to energy trading environ-
ments, where traditional models often prove inadequate due to market incompleteness,
basis risk, and extreme price dynamics.

5. RL for Derivatives Valuation in Energy Markets
5.1. Option Pricing Fundamentals

Derivatives valuation in energy markets presents distinctive challenges that differen-
tiate these instruments from their counterparts in conventional financial markets. These
challenges arise from several fundamental characteristics of energy commodities and their
corresponding markets.

The non-storability of certain energy commodities, particularly electricity, represents a
significant departure from traditional financial assets. Unlike securities or even physical
commodities such as precious metals, electricity cannot be economically stored in sub-
stantial quantities. This characteristic violates a fundamental assumption underpinning
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traditional arbitrage-based pricing models—the ability to construct replicating portfolios
through buying and holding the underlying asset [44].

Energy price processes exhibit complex stochastic behavior that extends beyond the rel-
atively simple dynamics assumed in standard financial models. These processes frequently
incorporate features such as mean-reversion, reflecting the tendency of prices to return to
production cost levels; discontinuous jumps, capturing sudden supply or demand shocks;
and regime-switching, representing distinct market states with different underlying dy-
namics. These complex behaviors necessitate sophisticated stochastic modeling approaches
that extend well beyond conventional geometric Brownian motion assumptions [21].

Market incompleteness presents another substantial challenge for derivatives val-
uation in energy markets. The inability to construct perfect replicating portfolios—due
to non-storability, limited market depth, or the absence of liquid trading in certain risk
factors—undermines the theoretical foundation of risk-neutral valuation. This incomplete-
ness introduces an unavoidable element of subjectivity in pricing, as different market
participants may assign different values to non-hedgeable risks [22].

Many energy derivatives incorporate embedded optionality regarding delivery spec-
ifications, further complicating their valuation. These contingent features may include
flexibility in delivery location, timing, or quantity. For instance, natural gas swing contracts
permit buyers to vary daily consumption within specified limits, while power transmission
rights grant optionality regarding the utilization of transmission capacity [1].

Despite these challenges, several methodological approaches have been developed
to address energy derivatives pricing. Extended Black–Scholes frameworks modify the
standard geometric Brownian motion assumption to incorporate mean-reversion, jumps,
and other features characteristic of energy price dynamics [75,98]. Monte Carlo simulation
techniques provide numerical solutions through the simulation of price paths based on
specified stochastic processes, particularly valuable for path-dependent derivatives or
contracts with complex exercise features [14]. Partial differential equation methods offer
numerical solutions to the governing equations of derivative prices under specific assump-
tions about the underlying price process, though their application becomes increasingly
challenging as the dimensionality of the problem increases [132].

Following our examination of option pricing fundamentals, Table 2 classifies sig-
nificant research applying reinforcement learning methodologies to energy derivatives
valuation. This classification organizes studies by valuation problem type, RL methodology,
energy market focus, and key contributions. The table illustrates how different RL ap-
proaches address specific challenges in energy derivatives pricing and real options analysis,
providing a framework for understanding the comparative advantages of these methods
over traditional approaches.

Table 2. Summary of reinforcement learning applications in energy derivatives valuation, highlighting
methodologies, energy domains, and key contributions.

Study Valuation Problem RL Methodology Energy Focus Key Contribution

Halperin
(2019) [74]

General option
pricing Q-learning Energy options

Model-free approach deriving
pricing functions directly from

empirical data

Buehler et al.
(2019) [133]

Hedging under market
frictions

Deep reinforcement
learning Options hedging

Framework accommodating
transaction costs and market

incompleteness

Becker et al.
(2019) [134] Optimal stopping Deep Q-Network American-style options

Direct learning of exercise policies
without explicit

continuation values
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Table 2. Cont.

Study Valuation Problem RL Methodology Energy Focus Key Contribution

Becker et al.
(2020) [135]

Gas swing option
valuation

Deep reinforcement
learning Natural gas contracts RL approach superior to LSMC for

contracts with complex constraints
Marzban et al.

(2023) [18]
Risk-aware option

pricing
Actor-critic with risk

measures Energy derivatives Incorporation of expectile risk
measures for risk-averse valuation

Song (2022)
[136]

Computationally
efficient pricing

Deep RL with
high-performance

computing
Energy option pricing Real-time pricing under dynamic

market conditions

Carbonneau
(2021) [29] Equal risk pricing Neural networks

with RL Energy derivatives
Pricing framework reflecting

actual hedging costs and
residual risks

Dalal et al.
(2016) [41]

Generation asset
valuation

Deep Deterministic
Policy Gradient

(DDPG)
Power generation Operating policies maximizing

value under technical constraints

Boogert and
de Jong (2008)

[137]
Gas storage valuation Q-learning Natural gas storage Capturing complex intertemporal

tradeoffs in storage operations

Lee et al.
(2023) [10]

CCU investment
valuation RL with real options Carbon capture

Framework for identifying
optimal investment timing

under uncertainty
Caputo and

Cardin (2022)
[31]

Waste-to-energy system
valuation

Deep RL for
flexibility analysis Energy systems

DRL models improved economic
outcomes by up to 69% vs.

traditional approaches

Cheraghi et al.
(2024) [38]

Energy transition
investment

RL for sustainable
planning Renewable energy

Dynamic optimization considering
environmental and

regulatory uncertainty

5.2. RL Approaches to Option Pricing and Applications

Reinforcement learning methodologies offer promising alternatives to traditional
derivatives valuation techniques, potentially addressing several limitations of conventional
approaches. These methods have demonstrated particular utility in the context of energy
derivatives, where complex market dynamics and incompleteness present significant
modeling challenges.

Particularly, Halperin (2019) [74] developed a model-free approach to option pricing
using reinforcement learning frameworks. This methodology enables an agent to learn
pricing functions by directly interacting with a simulated market environment, circumvent-
ing the need for explicit specification of the underlying price process. The approach derives
pricing functions directly from empirical data, thereby avoiding potentially restrictive
parametric assumptions. When applied to energy options, this technique demonstrated
notable efficacy, particularly for instruments with complex features that resist conventional
parametric modeling. The flexibility of this approach proves especially valuable in en-
ergy markets, where price dynamics exhibit distinctive characteristics including extreme
volatility, mean-reversion, and regime-switching behavior.

The deep hedging framework proposed by Buehler et al. (2019) [133] represents an-
other significant application of reinforcement learning to derivatives pricing. This approach
employs deep reinforcement learning to determine optimal hedging strategies that mini-
mize hedging error under realistic market conditions. When extended to energy derivatives,
this methodology naturally accommodates market frictions, including transaction costs,
liquidity constraints, and market incompleteness—features that traditional risk-neutral
pricing approaches struggle to incorporate. By optimizing hedging decisions directly, rather
than deriving them from theoretical price processes, deep hedging provides more robust
risk management strategies for complex energy derivatives.
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Specifically, Becker et al. (2019) [134] applied deep reinforcement learning techniques
to optimal stopping problems, which have particular relevance for American-style options
and swing options commonly traded in energy markets. Their methodology employed a
Deep Q-Network (DQN) architecture to learn optimal exercise policies directly, eliminating
the need for explicit modeling of continuation values that traditional approaches require.
When applied to gas storage contracts with complex exercise constraints, their reinforce-
ment learning approach demonstrated superior performance compared to conventional
least-squares Monte Carlo methods. This performance advantage stems from the ability
of reinforcement learning algorithms to capture complex exercise boundaries without
restrictive functional form assumptions.

The valuation of energy derivatives presents unique challenges that traditional ap-
proaches struggle to address effectively. Electricity’s non-storability, complex price dynam-
ics, and the presence of operational constraints create an incomplete market where perfect
hedging is impossible. RL offers a model-free framework that can learn optimal pricing
and hedging strategies directly from market data without requiring explicit specification of
the underlying stochastic processes.

Particularly, Marzban et al. (2023) [18] extend deterministic actor–critic reinforcement
learning to incorporate time-consistent recursive expectile risk measures, addressing the
risk-averse nature of energy market participants. Their approach accommodates complex
hedging problems even when only historical asset data are available, generating nearly
optimal hedging policies for energy derivatives without requiring full knowledge of asset
dynamics. This is particularly valuable in electricity markets where price processes exhibit
regime-switching behavior and extreme events that parametric models struggle to capture.

Also, Song (2022) [136] addresses the computational intensity of option pricing in
energy markets by integrating high-performance computing with deep reinforcement learn-
ing. This approach enables real-time pricing of complex energy derivatives under dynamic
market conditions, incorporating challenges like random interest rates and transaction
costs that are prevalent in energy markets. The shift from analytical models to data-driven,
computation-heavy frameworks aligns well with the realities of modern energy derivatives
that often lack closed-form solutions.

The concept of equal risk pricing, explored in depth by Carbonneau (2021) [29],
offers a promising framework for energy derivatives where market incompleteness makes
traditional risk-neutral pricing problematic. By modeling hedging strategies as neural
networks trained via deep reinforcement learning, this approach can generate fair prices
for energy derivatives that reflect the actual hedging costs and residual risks faced by
market participants. The ability to incorporate multiple hedging instruments is particularly
relevant for energy markets where cross-commodity hedging is common practice.

The distinctive characteristics of energy markets have allowed for the rise of special-
ized option structures that present unique valuation challenges, prompting researchers to
explore reinforcement learning approaches for these instruments.

Swing options represent a significant application domain in energy markets, particu-
larly in natural gas and electricity contracts. These instruments afford holders the flexibility
to determine both the timing and volume of delivery, subject to cumulative constraints
over the contract period. This optionality is particularly valuable due to the volatile nature
of energy prices and varying demand patterns. Also, Meinshausen and Hambly (2004) [19]
pioneered the application of reinforcement learning to this valuation problem, implement-
ing Q-learning algorithms to determine optimal exercise policies that respect both local
and global constraints. Building upon this foundation, Becker et al. (2020) [135] employed
deep reinforcement learning methodologies to value swing options in natural gas mar-
kets, demonstrating performance advantages over traditional least-squares Monte Carlo
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approaches. Their research revealed particularly significant improvements for contracts
with complex constraint structures and during periods of high market volatility, where the
adaptive nature of reinforcement learning offers distinct advantages.

Spread options, particularly spark spreads (electricity price minus gas price multiplied
by heat rate) and dark spreads (electricity price minus coal price multiplied by heat rate),
constitute fundamental instruments for managing generation asset exposure in energy
portfolios. These instruments derive their value from the margin between output and
input commodity prices, incorporating the efficiency factor of the conversion process. In
addition, Carmona and Coulon (2014) [21] elucidated the challenges inherent in valuing
these instruments using traditional methods, noting, particularly, the complex correlation
structures and regime-switching behaviors that characterize the relationship between fuel
and electricity prices. The application of reinforcement learning to spread option valuation
remains an evolving research domain, with recent studies suggesting promising results
in capturing the non-linear dependencies between underlying commodities. The multi-
factor nature of these options presents both challenges and opportunities for reinforcement
learning approaches, as the high-dimensional state space benefits from the RL’s capacity to
learn complex value functions.

Locational spread options emerge from transmission constraints that create price
differentials between geographic regions within interconnected energy networks. These
instruments derive value from arbitraging price disparities between locations when trans-
mission capacity permits. Particularly, Oren (2001) [138] articulated the difficulties in
applying conventional valuation techniques to these instruments, highlighting the impact
of network topology and congestion patterns on option values. Recent applications of
reinforcement learning to this domain have demonstrated advantages in incorporating the
complex network constraints and contingency scenarios that influence locational spread
values. The stochastic nature of both congestion patterns and regional supply–demand dy-
namics creates a particularly suitable application for reinforcement learning methodologies,
which can adapt to changing network conditions without requiring explicit modeling of all
contingencies. Furthermore, the integration of increasing volumes of location-dependent
renewable generation has enhanced the importance and complexity of these instruments,
creating additional incentives for advanced valuation methodologies.

These specialized energy options illustrate the diversity of challenges in energy
derivatives valuation and highlight the potential advantages of reinforcement learning
approaches over traditional techniques, particularly when handling complex constraints,
high-dimensional state spaces, and regime-dependent dynamics that characterize modern
energy markets.

5.3. Real Options Analysis

Real options analysis provides a framework for valuing operational flexibility and
managerial discretion embedded in physical assets and investment decisions in energy mar-
kets. Unlike traditional discounted cash flow methods, real options approaches explicitly
account for the value of flexibility under uncertainty. Reinforcement learning methodolo-
gies offer a natural computational framework for addressing these complex sequential
decision problems that often resist closed-form solutions.

The valuation of power generation assets represents a prominent application domain,
as these facilities can be conceptualized as real options to transform fuel inputs into electric-
ity when economically advantageous. Specifically, Tseng and Barz (2002) [139] articulated
the limitations of conventional valuation methodologies in this context, particularly their
inability to adequately incorporate technical constraints and operational characteristics.
Advancing this research direction, Dalal et al. (2016) [41] implemented deep reinforcement
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learning techniques for generation asset valuation, developing operating policies that
maximized economic value while respecting technical constraints. Their methodology em-
ployed a Deep Deterministic Policy Gradient algorithm with a multidimensional state space
encompassing fuel prices, electricity prices, and plant operational status variables. This ap-
proach demonstrated superior performance compared to traditional methods, particularly
in capturing the value of operational flexibility under complex market conditions.

Energy storage facilities, including natural gas storage, pumped hydroelectric sys-
tems, and battery installations, represent sophisticated real options with multi-dimensional
constraints. Specifically, Boogert and de Jong (2008) [137] applied classical reinforcement
learning techniques to natural gas storage valuation, demonstrating how these methods
could capture the complex intertemporal trade-offs inherent in storage operation. Subse-
quent research has extended these approaches to incorporate additional constraints and
market characteristics.

Investment timing decisions in energy infrastructure development involve embed-
ded timing options that significantly impact project valuation. Also, Chronopoulos et al.
(2016) [39] examined these timing options specifically within the context of renewable
energy investments, highlighting how policy uncertainty affects optimal investment strate-
gies. Reinforcement learning approaches offer particular advantages in this domain due
to their ability to incorporate multiple uncertainties simultaneously, including regulatory
changes, technological learning curves, and market condition evolution.

Recent literature has significantly advanced the integration of reinforcement learn-
ing with real options analysis in energy markets. Specifically, Nadarajah and Secomandi
(2023) [140] provide a comprehensive review of real options applications across various
energy domains, including electricity, natural gas, and crude oil, highlighting the evolving
role of machine-learning techniques in capturing value under uncertainty. Their survey
establishes a foundation for understanding how computational approaches are transform-
ing valuation methodologies in energy finance, building upon the earlier works while
identifying emerging research directions.

The application of reinforcement learning to environmentally significant energy tech-
nologies has emerged as a particularly active research area. Specifically, Lee et al. (2023) [10]
developed a framework merging real options theory with reinforcement learning to evalu-
ate the commercial viability of carbon capture and utilization (CCU) technologies. Their
approach models uncertain factors such as market prices and policy shifts, identifying
optimal investment timing and highlighting the value of flexibility in energy project de-
ployment under deep uncertainty. Similarly, Alqubaisi (2023) [141] applied deep-learning
methods to value real options in renewable energy projects, developing a framework
that captures non-linear dependencies and offers a scalable approach to handle complex
valuation under stochastic conditions.

Methodological advancements in applying reinforcement learning to real options have
also progressed significantly. Furthermore, Caputo and Cardin (2022) [31] proposed a
deep reinforcement learning approach to assess flexibility in engineering systems, tested
on a waste-to-energy system. By comparing DRL models with traditional decision rule
approaches, they demonstrated that DRL-enhanced models improved economic outcomes
by up to 69%, generalizing across scenarios and supporting better-informed strategic design
under uncertainty. Moreover, Lawryshyn (2023) [9] further emphasized the limitations of
classical option pricing models in capturing multidimensional uncertainties and proposed
RL-based solutions for adaptive decision-making, providing valuable insights into training
RL agents for investment strategies with embedded flexibility.

Looking toward future energy systems, Cheraghi et al. (2024) [38] explored the use of
reinforcement learning in planning and investment for sustainable energy transitions. Their
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work introduces RL algorithms that dynamically optimize energy systems considering
environmental and regulatory uncertainty, positioning RL as a crucial tool to unlock value
creation in decarbonized energy strategies. This research direction highlights how rein-
forcement learning can address the complex, multi-objective decision problems inherent in
energy transition investments.

The application of reinforcement learning to real options valuation in energy markets
remains an active research frontier with substantial opportunities for methodological
advancement. Future research directions include the development of hybrid approaches
that combine the interpretability of traditional real options models with the flexibility of
reinforcement learning, and the extension of these methods to address multi-agent decision
environments that better reflect competitive market dynamics.

6. Option Value in Power Systems
6.1. Real Options Framework for Smart Grid Technologies

The concept of option value has found significant applications in power systems,
particularly in economically evaluating smart grid investments under uncertainty [142].
In this context, the option value of deploying a smart grid technology represents the
difference in total expected system costs between cases with and without the technology
deployment [81]. This approach recognizes that smart grid investments create flexibility
to deal with future sources of uncertainty, which has economic value beyond traditional
deterministic cost–benefit analysis [143].

Several smart grid technologies have demonstrated significant option value when
captured using a stochastic optimization framework [25]. Dynamic Line Rating (DLR)
captures the variable transmission capacity based on real-time conditions rather than static
conservative ratings, generating option value from deferred transmission investments
and improved congestion management [144]. In this context, Giannelos et al. (2018) [63]
quantified the option value of DLR in transmission systems, showing that DLR can lead to
expensive network reinforcements being deferred or displaced.

Energy storage systems provide multiple services, including arbitrage, capacity de-
ferral, ancillary services, and renewable integration. Their option value stems from the
ability to charge/discharge load in response to price signals, system needs, and renewables
output—all subject to significant uncertainty [145]. Also, Giannelos et al. (2020) [60] devel-
oped a methodology to quantify the contribution of energy storage to the security of supply
through the F-Factor approach, capturing additional option value beyond traditional energy
arbitrage applications.

Demand-Side-Response (DSR) programs create option value by providing network
operators with flexibility to modify load profiles in response to supply constraints or price
signals. This flexibility is particularly valuable during extreme events or unexpected system
conditions, as shown by Papadaskalopoulos and Strbac, 2017 [146]. Also, Giannelos et al.,
2018 [26] and Giannelos et al., 2018 [64]) analyzed the option value of the demand-side
response under decision-dependent uncertainty, demonstrating the significant option value
of DSR technology under endogenous uncertainty, using stochastic optimization.

Advanced Network Management Systems that enable greater observability and con-
trollability of distribution networks create option value by allowing network operators to
defer traditional reinforcement costs while maintaining reliability under uncertain load
growth and distributed generation adoption [47]. In their comprehensive framework,
Giannelos, Borozan, Konstantelos et al. (2024) [57] quantified the option value, investment
costs, and deployment levels for various smart grid technologies, providing a systematic
approach to evaluating these investments.
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Electric Vehicle Smart Charging creates significant option value by coordinating charg-
ing patterns to support grid requirements [147]. Specifically, Giannelos, S., Borozan, S., and
Strbac, G. (2022) [55] developed a backwards induction framework that quantifies both the
option value of smart charging and the risk of stranded assets under uncertainty. Their
analysis demonstrated how smart charging strategies can significantly reduce network
investment costs while accommodating growing EV penetration. Additionally, in two
studies, Borozan, Giannelos, and Strbac [148,149]) integrated EV smart charging as an
investment option within strategic network expansion planning, demonstrating substantial
option value through deferred network reinforcements. Similarly, Giannelos, S., Borozan,
S., Strbac, G. et al. (2024) [58] focused on vehicle-to-grid applications, quantifying their
contribution to security of supply using the F-Factor methodology, capturing additional
option value beyond traditional V2G applications. Moreover, the option value of smart
charging portfolios is presented in Giannelos, Borozan, Moreira et al. (2023) [59].

Soft Open Points, power electronic devices that enable flexible network reconfiguration
in distribution systems, have also demonstrated significant option value [52,86]. The paper
by Lu et al. (2019) [16] proposes a multi-layer planning model for deploying Soft Open
Points in active distribution networks, integrating a demand response to enhance grid
flexibility and reduce operational costs. SOPs are used to control power flow and mitigate
issues arising from high penetration of distributed generation, while demand response
is modeled using time-of-use pricing to shift loads cost-effectively. The model, solved
using an improved particle swarm optimization algorithm, shows through IEEE-33 node
simulations that this combined planning approach improves both economic performance
and operational feasibility.

A similar analysis is presented in Giannelos, Konstantelos et al. (2019), where soft
open point technology is combined with energy storage [150].

6.2. Stochastic Optimization Approach to Quantifying Option Value

The quantification of option value for smart grid technologies typically employs
stochastic optimization methods in a two-stage process. In the first stage, a stochastic
optimization problem is solved without the smart grid technology under future uncertainty.
The objective function typically minimizes total system costs, including operational costs
and investment costs. The result is the expected system cost without the technology. In
the second stage, the same stochastic optimization problem is solved with the smart grid
technology considered for deployment in the system [71]. This yields the expected system
cost with the technology. A list of smart technologies and their formulations is presented in
Giannelos, Borozan, and Aunedi (2023) [56].

The difference between these expected costs represents the option value of the tech-
nology. A positive difference indicates that the technology creates value by providing
flexibility to deal with uncertainty. Key uncertainties typically modeled in such stochastic
optimization models include renewable generation output, load growth and profiles, fuel
prices, equipment outages, policy and regulatory changes, and technology costs. These un-
certainties represent the primary factors that affect the valuation of smart grid technologies
and must be adequately characterized to produce meaningful option value estimates.

Mathematically, this can be formulated as:

OV = E[Cwithout]− E[Cwith]

where OV is the option value, E[Cwithout] is the expected cost without the technology, and
E[Cwith] is the expected cost with the technology, each quantified via stochastic optimization.

Specifically, Giannelos, Konstantelos et al. (2017) [62] developed a new class of plan-
ning models for option valuation of storage technologies under decision-dependent inno-
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vation uncertainty. Their approach incorporated how deployment decisions affect future
technology costs and capabilities, showing that traditional models undervalue early adop-
tion of promising technologies.

In particular, Zhao et al. (2015) [121] applied this approach to evaluate energy storage
systems in a system with high renewable penetration. Their analysis showed that traditional
deterministic approaches significantly undervalued storage by failing to capture its ability
to mitigate the uncertainty of renewable generation.

Also, Giannelos, Jain, and Borozan (2021) [61] apply stochastic optimization to long-
term expansion planning of the transmission network in India under multi-dimensional
uncertainty. Their framework captures complex interactions between different sources
of uncertainty, demonstrating how flexible investment strategies create substantial op-
tion value in rapidly evolving power systems. Building on this work, Giannelos, Zhang
et al. (2024) [66] developed methods for Pareto frontier sensitivity analysis in power
systems, enabling decision-makers to understand how economic value changes across
different configurations.

Moreover, Dong, Zhang, et al. (2024) [45] examined how coordinated control of space
heating across multiple buildings can enhance urban energy system flexibility. Using
optimization models that incorporate building thermal dynamics and occupant comfort
constraints, they demonstrated substantial option value from heating flexibility.

6.3. Methodological Considerations for RL-Based Option Valuation

Applying RL to quantify the option value of smart grid technologies involves several
methodological considerations. To accurately determine option value, the baseline (without
technology) scenario must use the same RL algorithm and reward structure, differing only
in the availability of the technology. This ensures a fair comparison of expected costs. The
scenarios used for training and evaluation should properly represent the underlying uncer-
tainties. Techniques like importance sampling, scenario reduction, and generative models
can help create representative scenario sets without excessive computational burden.

The reward function should accurately reflect the total system costs, including op-
eration and investment costs. Improperly specified reward functions can lead to biased
option value estimates. Smart grid investments typically have multi-decade lifespans.
RL approaches must properly account for long-term effects, either through appropriate
discount factors or explicit modeling of long-term scenarios. RL-based valuation typically
requires significant computational resources for training.

Techniques like transfer learning, model-based RL, and distributed computing can
help address this challenge, similar to decomposition methodologies applied to stochastic
optimization frameworks as in Borozan, Giannelos et al. (2024) [151], which present a
machine-learning-enhanced Benders decomposition approach for multi-stage stochastic
transmission expansion planning that significantly improves computational efficiency
while capturing the full option value of smart grid investments [35].

These models could support more accurate scenario generation for RL-based option
valuation. Similarly, Giannelos, Zhang, Pudjianto et al. (2024) [65] compared strategic
versus incremental planning approaches in electricity distribution grids, providing insights
into how different planning horizons affect option values—a key consideration when
designing RL reward functions for long-term investment decisions.

6.4. Future Research Directions

Several promising research directions could further enhance RL-based option valu-
ation in power systems. Most studies focus on individual technologies, but real power
systems deploy portfolios of complementary smart grid technologies. Research on RL-based
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valuation of technology portfolios could identify synergistic combinations (Charousset-
Brignol et al., 2021) [33] that create greater option value than the sum of individual technolo-
gies. Rather than learning expected values, distributional RL learns the full distribution of
returns. This approach could provide more comprehensive information about the option
value distribution under extreme events and rare scenarios. Different stakeholders have dif-
ferent risk preferences when evaluating smart grid investments. Research on risk-sensitive
RL could provide option valuations tailored to specific risk preferences, such as risk-averse
utility regulators. Smart grid deployments can influence market prices and regulatory
decisions, creating feedback effects not captured in current models. Research on RL ap-
proaches that model these feedback effects could provide more accurate option valuations.
Regulatory approval of smart grid investments typically requires transparent justification.
Research on explainable RL could make option valuation results more interpretable and
trustworthy for regulators and other stakeholders.

7. Conclusions: Limitations, Future Directions, and Policy Limitations
This review has examined how reinforcement learning can be applied to energy

finance, highlighting applications ranging from price forecasting and trading strategies
to derivatives valuation and option value assessment in power systems. As this field
continues to evolve, it is important to recognize current limitations, identify promising
research directions, and consider policy implications.

7.1. Current Limitations of RL in Energy Finance

Despite demonstrating significant potential, the application of reinforcement learning
methodologies to energy finance encounters several substantial challenges that merit
careful consideration.

Interpretability remains a primary concern in the deployment of RL techniques within
financial contexts. Deep reinforcement learning models frequently operate as “black boxes”,
with decision-making processes that resist straightforward human interpretation. This
opacity presents significant impediments for risk management protocols and regulatory
compliance frameworks that typically require transparent justification of trading strategies
and investment decisions. While recent research has explored techniques such as attention
mechanisms and feature importance analysis to enhance model interpretability [152], these
approaches have yielded only incremental improvements. The development of inherently
interpretable RL architectures that maintain competitive performance represents a critical
avenue for future research, particularly as financial regulators increasingly scrutinize
algorithmic decision-making systems.

Sample complexity constitutes another significant limitation. RL algorithms charac-
teristically require extensive data for effective policy learning, a requirement that proves
problematic in energy finance applications where historical data may be insufficient, partic-
ularly for rare events or emerging market structures. This limitation becomes especially
pronounced when modeling extreme price events or evaluating strategies under novel
regulatory frameworks. Current approaches addressing this constraint include model-
based reinforcement learning, which leverages environment models to reduce data re-
quirements; transfer-learning techniques that apply knowledge from related domains;
and synthetic data augmentation [153]. However, the effectiveness of these methods re-
mains constrained when the target domain exhibits substantial structural differences from
available training data. The integration of domain knowledge and physics-informed con-
straints into RL frameworks offers a promising direction for improving sample efficiency in
energy applications.



Energies 2025, 18, 2712 28 of 41

The challenge of generalization across distinct market regimes is particularly salient
in energy finance. Reinforcement learning agents trained under specific market conditions
frequently struggle to maintain performance when confronted with regulatory changes,
technological disruptions, or structural market shifts. This limitation is particularly rele-
vant in energy markets, which regularly experience significant policy interventions and
infrastructure evolution. While meta-learning approaches have demonstrated promise for
adapting to changing environments [13], these techniques remain in the nascent stages of
development for financial applications. Robust evaluation methodologies that specifically
assess RL algorithm performance across regime changes could provide valuable insights
for practitioners implementing these systems in dynamic energy markets.

Computational requirements present practical implementation barriers, particularly
for smaller market participants. Contemporary deep reinforcement learning methods
typically demand substantial computational resources during both training and, in some
cases, inference phases. This resource intensity creates asymmetric advantages for larger in-
stitutions with greater technological capabilities. Although algorithmic improvements and
optimization techniques have somewhat mitigated these requirements, computational effi-
ciency remains a significant concern [154]. The development of more efficient algorithmic
formulations and hardware-specific optimizations could democratize access to advanced
RL techniques across a broader spectrum of energy market participants. Additionally, fed-
erated learning approaches may offer pathways to collaborative model development while
maintaining data privacy, potentially addressing both computational and data scarcity
challenges simultaneously.

Finally, the field suffers from benchmarking difficulties that impede systematic evalua-
tion and comparison of different methodologies. The absence of standardized benchmarks
and evaluation protocols makes objective assessment of competing RL approaches, compli-
cating both research progress and practical implementation decisions. The development of
common benchmarks specifically designed for energy finance applications, incorporating
realistic market constraints and evaluation metrics aligned with practitioner objectives,
represents an important direction for future research [155]. These benchmarks should
ideally capture the multifaceted nature of energy markets, including physical constraints,
regulatory frameworks, and the multiple time scales characteristic of energy price dynamics
discussed in earlier sections.

7.2. Promising Research Directions

The intersection of reinforcement learning and energy finance presents fertile ground
for innovative research. Below, we identify key research directions organized by method-
ological advancements, application domains, and comparative studies that warrant further
exploration in this rapidly evolving field.

7.2.1. Methodological Advancements for Energy Finance

Explainable RL for Energy Investment Decisions: Developing interpretable reinforce-
ment learning models represents a critical research priority. For smart grid investments,
transparency in decision processes, in particular, is essential for regulatory approval and
stakeholder acceptance. Future research should focus on methods that balance performance
with comprehensibility, perhaps through attention mechanisms that highlight which factors
most influence investment timing and operational decisions in energy assets [79].

Multi-agent Reinforcement Learning Frameworks: As energy systems become increas-
ingly decentralized, understanding strategic interactions becomes essential. Multi-agent
reinforcement learning presents a compelling direction, particularly for optimizing dis-
tributed energy resources across smart grid ecosystems [156]. Research in this area could
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address how decentralized decision-making impacts financial returns across different stake-
holders and potentially reveal emergent properties that centralized valuation methods
might miss.

Transfer Learning and Domain Adaptation: Energy markets exhibit significant re-
gional variations in regulations, market structures, and resource availability. Research on
transferring knowledge from data-rich to data-sparse markets could enable more efficient
application of RL techniques. This is particularly relevant for emerging energy technologies
where historical data may be limited, but analogous applications exist in other domains.

7.2.2. Enhanced Valuation of Energy Assets and Flexibility

Valuation of Operational Flexibility: Traditional real options valuation often struggles
to capture the complex interdependencies between multiple flexibility options in smart
grid technologies. Reinforcement learning algorithms, with their ability to learn optimal
policies through interaction with dynamic environments, offer promising mechanisms to
value these interconnected flexibilities more accurately. Such research could bridge the
gap between theoretical option value and practical implementation challenges in smart
grid investments.

Long-duration Energy Storage Valuation: Deep reinforcement learning techniques
show promise for addressing the complex valuation of long-duration energy storage assets
within smart grid systems. These assets present particular challenges in balancing short-
term operational decisions with long-term strategic value creation. Research applying deep
reinforcement learning methods to capture these temporal dependencies could overcome
limitations of traditional valuation methods that often oversimplify the strategic dimension
of energy storage.

Renewable Integration Flexibility: Methods for accurately valuing flexibility in high-
renewable energy systems remain underdeveloped. Research applying distributional
reinforcement learning to capture the full range of outcomes under renewable uncertainty
could provide more accurate valuations of flexible assets like batteries, demand response,
and dispatchable generation. This research is particularly relevant as energy systems
worldwide transition toward higher renewable penetration.

7.2.3. Uncertainty Modeling and Risk Assessment

Regulatory Uncertainty: Energy markets face continuous regulatory evolution, cre-
ating significant uncertainty for investors. Research developing reinforcement learning
algorithms that explicitly model and adapt to regulatory changes could help energy in-
vestors maintain option value in unstable policy environments. This is particularly relevant
for smart grid technologies, which often rely on evolving market structures and incen-
tive mechanisms.

Climate Risk Integration: Future research should explore integrating climate risk
factors into reinforcement learning frameworks for energy investments. This includes
modeling physical risks (extreme weather impacts on infrastructure) and transition risks
(policy and technology shifts) within RL environments. Models that capture these complex,
interacting uncertainties could significantly improve long-term energy investment decisions
under climate change scenarios [56].

Cross-market Risk Dependencies: Energy markets exhibit strong interdependencies
with other commodities and financial markets. Developing reinforcement learning ap-
proaches that capture these cross-market dynamics represents a promising research direc-
tion with significant implications for comprehensive risk management in energy invest-
ment portfolios.
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7.2.4. Comparative Analysis of Decision-Making Frameworks

Comparative analysis of decision-making frameworks represents a critical research
opportunity. By systematically evaluating reinforcement learning, stochastic optimization,
and least-worst-regret approaches [36] for energy investment decisions, researchers can
establish clearer guidelines for when each methodology excels. Smart grid technologies
often involve multiple uncertainties across varying time horizons, making the selection of
appropriate decision frameworks crucial. This comparative research could yield practical
decision roadmaps for energy finance practitioners facing complex investment choices.

Each methodology offers distinct advantages in handling uncertainty, computational
requirements, and interpretability. By advancing understanding of their relative strengths
in the energy finance context, researchers can develop more robust decision-support tools
for smart grid investment and operation. Standardized benchmarks and case studies would
further enhance the practical utility of such comparative analyses.

The advancement of open-source implementations, standardized problem formula-
tions, and common datasets would accelerate progress across these research directions.
Addressing these complex challenges at the intersection of reinforcement learning and
energy finance will require interdisciplinary collaboration between financial engineering,
computer science, energy systems, and policy research communities.

7.2.5. Sustainable Communities and Energy Equity

The application of reinforcement learning to energy finance extends beyond technical
optimization and economic efficiency to address pressing social challenges. There is grow-
ing recognition that energy systems must support sustainable communities by combating
energy poverty [54,157–159] and ensuring equitable distribution of benefits [160]. This
section examines how reinforcement learning methodologies can be leveraged to promote
pragmatic solutions that balance technical, economic, and social dimensions of energy
transitions [8].

Social Innovation in Community Energy Transitions: Energy transitions are increas-
ingly viewed through the lens of social innovation and community participation rather
than purely technological change. Alaize Dall–Orsoletta et al. (2022) [161] conducted a
systematic review of how social innovations promote community-driven energy transitions,
identifying major themes, including citizen participation, institutional support, and the
role of cooperatives in renewable energy deployment. The authors highlighted practical
examples of successful transitions facilitated through collective action, providing a foun-
dation for understanding how reinforcement learning frameworks could be designed to
support community-based decision processes [162,163].

Building on this foundation, Pillan et al. (2023) [164] proposed conceptual frameworks
to help communities better understand and contribute to sustainable energy transitions,
emphasizing the role of education and participatory design in fostering local energy ini-
tiatives. Their work suggests that reinforcement learning models could be developed to
incorporate community preferences and knowledge, creating more robust and socially
accepted energy optimization strategies. Similarly, Neij et al. (2025) [165] reviewed expe-
riences of energy communities across Europe, identifying key success factors, including
strong local engagement, supportive regulations, and diversified revenue streams—factors
that could be parameterized within RL frameworks to better reflect community priorities.

Energy Poverty Assessment and Alleviation: Energy poverty—inadequate access to
affordable, reliable energy services—remains a critical challenge globally. Recent advances
in machine-learning applications for energy poverty have opened new avenues for address-
ing this issue. López–Vargas et al. (2022) [15] examined how AI methods are being applied
to energy poverty contexts, noting that relatively few studies have explored AI solutions
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specifically for energy poverty and suggesting future directions for AI-based detection,
prediction, and policy design.

More concretely, Gawusu et al. (2024) [53] used spatial data and predictive modeling
to identify energy poverty hotspots and inform targeted policy measures, demonstrating
how spatial analytical techniques could enhance the precision of interventions. Abbas et al.
(2022) [166] employed machine learning to measure and predict extreme forms of energy
poverty based on multiple socio-economic factors, identifying critical determinants such as
income, education, and geographic variables. These advancements in prediction and classi-
fication provide foundations that reinforcement learning frameworks could build upon to
optimize dynamic resource allocation for energy poverty alleviation programs [167].

Che et al. (2021) [37] proposed an integrated evaluation framework for global energy
poverty, stressing availability and affordability of energy as primary obstacles to alleviation.
Their emphasis on regional disparities as barriers for global policy coordination highlights
the need for adaptive solutions that reinforcement learning is well-positioned to provide.
Complementing this work, Lippert and Sareen (2023) [12] explored how transitioning to
low-carbon energy infrastructures can help reduce energy poverty, using big data analytics
to identify systemic changes needed in infrastructure and agency behavior. Their finding
that mere technological fixes are insufficient without systemic policy shifts aligns with
the need for reinforcement learning approaches that can navigate both technical and
institutional complexities.

Democratized Energy Markets and Community Participation: Reinforcement learning
shows particular promise in enabling more inclusive participation in energy markets. Piras
et al. (2024) [168] presented an open-source AI/ML-based tool designed to facilitate the
automated creation of renewable energy communities, demonstrating that AI can directly
enhance social coordination in energy system development. By integrating advanced
energy modeling and citizen participation frameworks, such tools support a decentralized
and democratic energy transition—an application area where reinforcement learning’s
sequential decision-making capabilities could prove particularly valuable.

The concept of a “just energy transition” has gained prominence in policy discussions,
with del Guayo and Cuesta (2022) [42] critically examining this concept within European
policy frameworks. Their analysis of the Just Transition Fund highlighted its emphasis
on supporting coal-dependent regions while critiquing its narrow scope. The authors
argued that energy justice challenges extend beyond coal closures to issues like lithium
mining, rural environmental impacts, and growing energy poverty—complex trade-offs
that reinforcement learning methodologies could help navigate by incorporating multiple
objectives and constraints.

Equity-Aware Reinforcement Learning Frameworks: A critical challenge in applying
RL to energy finance is ensuring that optimization objectives incorporate equity considera-
tions. Chen et al. (2024) [36] addressed this challenge directly, focusing on how bias in ML
models can exacerbate existing inequities in energy systems. They proposed technical and
governance frameworks to mitigate biases and promote fairness across energy distribution
networks, providing a crucial blueprint for ensuring AI-driven energy systems uphold
principles of energy justice. These insights could inform the development of fairness-aware
reward functions in reinforcement learning models for energy systems.

Kaur et al. (2024) [169] explored how AI, particularly machine learning and data ana-
lytics, can improve the sustainability and resilience of energy systems while emphasizing
stakeholder engagement, such as involving local communities in solar energy initiatives.
Their argument that AI must be socially inclusive to fully realize sustainable energy transi-
tions suggests the need for reinforcement learning frameworks that explicitly incorporate
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distributional impacts and fairness constraints, similar to how risk constraints are integrated
into financial optimization models.

Ethical Considerations in AI-Driven Energy Systems: The ethical dimensions of AI de-
ployment in energy systems have received increasing attention. Chauhan et al. (2024) [32]
reflected on ethical concerns surrounding AI and ML deployment in clean energy systems,
particularly regarding fairness and social impact. Their discussion of the tension between
rapid technological advancement and ensuring equitable outcomes highlights the need
for careful design of reinforcement learning objectives and constraints in energy applica-
tions. Similarly, Jain and Mitra (2025) [82] advocated for human-centered AI systems that
prioritize marginalized groups when supporting sustainable development goals, including
energy access.

Nalli et al. (2025) [170] proposed frameworks for energy equity through intelligent
system design, highlighting AI’s role in enabling inclusive energy transitions at the com-
munity level. Their work on optimizing energy systems while ensuring equitable access to
affordable power provides conceptual groundwork for reinforcement learning applications
that balance efficiency with equity considerations.

Research Directions and Implementation Challenges: Despite growing interest in inte-
grating social considerations into energy system optimization, implementing equity-aware
reinforcement learning faces several challenges: defining appropriate fairness metrics,
obtaining representative data across diverse communities, and balancing potentially com-
peting objectives of efficiency and equity.

Alturif et al. (2024) [171] discussed using AI tools for poverty prediction and strategic
alleviation, reviewing various machine-learning models and their policy applications.
While focused broadly on poverty, their work highlights the transformative potential
of AI in identifying at-risk populations—a capability that could be enhanced through
reinforcement learning’s ability to optimize interventions across time.

Future research should focus on developing reinforcement learning frameworks that
explicitly incorporate community values and preferences, equity metrics, and distributional
impacts. Multi-objective reinforcement learning approaches that simultaneously optimize
for technical efficiency, economic viability, and social equity represent a particularly promis-
ing direction. As energy systems continue to evolve toward greater decentralization and
complexity, reinforcement learning approaches that can navigate these multidimensional
trade-offs will become increasingly valuable for creating truly sustainable energy futures.

7.3. Policy Recommendations

Based on the findings of this review, several policy recommendations emerge for
regulatory bodies, market operators, and industry participants seeking to harness the
potential of reinforcement learning in energy finance.

Regulatory Framework for Algorithmic Trading: As reinforcement learning adoption
increases in energy markets, regulatory bodies should develop frameworks specifically
addressing algorithmic trading that balance innovation with market stability. These frame-
works should include disclosure requirements for trading entities using RL systems, stress
testing protocols for extreme market scenarios, and circuit breaker mechanisms designed
to prevent cascading algorithmic reactions during market stress. Importantly, regulations
should be technology-neutral, focusing on outcomes and risk profiles rather than specific
algorithmic approaches.

Market Design Considerations: Market operators should evaluate how current market
rules and structures might be impacted by widespread RL adoption. Auction mechanisms,
price formation processes, and market clearing rules may require reconsideration to ensure
they remain robust in environments with significant algorithmic participation. In partic-
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ular, operators should consider how information disclosure policies influence RL-based
strategies and whether current market structures provide sufficient incentives for beneficial
flexibility provision while discouraging manipulative behavior.

Transparency and Interpretability Standards: Industry associations and regulators
should collaborate to develop standards for transparency and interpretability of RL systems
in energy markets. These standards could include requirements for documenting model
limitations, reporting backtest methodologies, and providing simplified explanations of de-
cision processes for significant trading actions. Such standards would enhance stakeholder
trust while providing a framework for responsible innovation.

Public Research Infrastructure: Government agencies and academic institutions should
invest in creating public research infrastructure for energy finance RL applications. This
infrastructure could include anonymized market data repositories, standardized simulation
environments reflecting realistic market conditions, and benchmark problem sets that
enable objective comparison of different approaches. Such resources would democratize
research opportunities, accelerate methodological advances, and support more robust
model evaluation.

Workforce Development: Educational institutions and industry stakeholders should
prioritize developing interdisciplinary training programs that combine energy systems
knowledge, financial engineering, and machine-learning expertise. The complexity of RL
applications in energy finance requires professionals who understand both the technical
nuances of advanced algorithms and the distinctive characteristics of energy markets.
Targeted educational initiatives would help address the talent gap in this emerging field.

7.4. Synthesis and Outlook

While significant work remains to address the limitations outlined in this review,
the promising results to date suggest that RL will increasingly transform how we value,
trade, and manage energy assets and contracts in the coming years. The ongoing energy
transition—characterized by increasing renewable penetration, storage deployment, and
market decentralization—will likely accelerate this transformation by creating greater com-
plexity and optionality that traditional approaches struggle to capture. By combining the
adaptive learning capabilities of reinforcement learning with domain-specific knowledge
of energy systems, researchers and practitioners can develop more sophisticated tools for
navigating the evolving energy finance landscape.

8. Conclusions
This review has examined how reinforcement learning can be applied to energy

finance. We have highlighted applications ranging from price forecasting and trading
strategies to derivatives valuation and option value assessment in power systems.

Energy markets have unique features that make them challenging to model. These
markets show extreme price swings, seasonal patterns, and complex regulations. Energy
assets like power plants and storage facilities also have physical limitations that create
special types of options. Traditional financial models often struggle with these complexities.

Reinforcement learning offers several important advantages for addressing these
challenges. First, RL can learn directly from data without needing simplified assumptions
about price behavior. Second, RL handles non-linear relationships well, which are common
in energy markets. Third, RL adapts to changing market conditions, a crucial feature in
evolving energy systems. Fourth, RL naturally incorporates complex constraints that are
difficult to include in traditional models.

The ability of RL to capture option value is particularly important. Smart grid technolo-
gies, energy storage systems, and demand response, all create significant option value—the
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net economic benefit of having flexibility under uncertainty. This option value represents
the difference in expected system costs between the cases with and without the deployment
of the flexible smart grid technology. RL methods are well-suited to quantify this value
because they can learn optimal decision policies across many possible future scenarios
and capture the sequential nature of energy system operations. Current approaches to
quantifying option value have relied primarily on stochastic optimization methods, which,
while effective, often become computationally intractable for high-dimensional problems
with many uncertainty sources and struggle to capture complex, non-linear relationships
and sequential decision processes. In this context, RL provides several advantages over
stochastic optimization for option valuation.

Despite these advantages, several challenges remain in applying RL to energy finance.
Interpretability concerns make it difficult for decision-makers to trust complex RL mod-
els. Data limitations can be problematic since RL algorithms typically need large training
datasets. Generalization across different market conditions remains difficult. Computa-
tional requirements can be extensive, especially for complex energy systems. Finally, the
lack of standardized benchmarks makes it hard to compare different approaches objectively.

Future research directions include developing more explainable RL methods for en-
ergy applications, creating robust approaches that perform well under extreme market
conditions, exploring multi-agent frameworks that capture strategic interactions among
market participants, sector coupling (Goyal et al., 2024) [70], and integrating RL with
traditional models. The integration of RL with traditional stochastic optimization methods
represents a particularly promising direction as well. Hybrid approaches could combine
stochastic optimization with the RL’s ability to discover complex non-linear policies. For
example, stochastic optimization could define scenario structures and boundary conditions,
while RL determines detailed operational policies within these frameworks.

In conclusion, reinforcement learning represents a powerful approach for addressing
the unique challenges of energy finance, particularly in capturing the option value created
by flexible technologies and operating strategies [172]. While significant work remains to
make these methods fully practical for industry applications, the promising results to date
suggest that RL will increasingly transform how we value, trade, and manage energy assets
and contracts in the coming years.
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